センター試験 数学I・数学A 2018年度追試 第5問 [2] 解説

【選択問題】(第3問~第5問から2問選択)

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$一般の凸多面体(へこみのない多面体)の頂点の数 $v$, 辺の数 $e$, 面の数 $f$ について $v-e+f$ の値を考える。例えば、立方体の場合で考えると、この値は $\myBox{ク}$ である。

 以下では $v:e=2:5$ かつ $f=38$ であるような凸多面体について考える。オイラーの多面体定理により $v-e+f=\mybox{ク}$ であることがわかるので、 $v=\myBox{ケコ}$, $e=\myBox{サシ}$ である。

 さらに、この凸多面体は $x$ 個の正三角形の面と $y$ 個の正方形の面で構成されていて、各頂点の集まる辺の数はすべて同じ $\ell$ であるとする。このとき $3x+4y=\myBox{スセソ}$ であることから $x=\myBox{タチ}$ であり、さらに $\ell=\myBox{ツ}$ である。

【広告】

考え方

オイラーの多面体定理に関する問題ですが、あまり練習する機会がないので、慣れていない人が多いでしょう。

オイラーの多面体定理の内容を覚えていなくても、問題文に沿って行けば解けるようになっていて親切です。ただ、後半は、頂点、辺、面の間に成り立つ他の関係式を自分で導く必要があり、類題を解いたことがないとなかなか難しいでしょう。わかりやすい立方体などを使って、どのように計算するかを考えると解きやすいかもしれません。