センター試験 数学II・数学B 2018年度追試 第1問 [1] 解説

【必答問題】

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$座標平面上に点$\mathrm{ A }(1,0)$, $\mathrm{ P }(\cos 2\theta,\sin 2\theta)$, $\mathrm{ Q }(2\cos 3\theta, 2\sin 3\theta)$ をとる。 $\theta$ が $\dfrac{\pi}{3}\leqq \theta\lt \pi$ の範囲を動くとき、 $\mathrm{ AP }^2+\mathrm{ PQ }^2$ の最大値と最小値を求めよう。

 $\mathrm{ AP }^2$ は
\begin{eqnarray}
\mathrm{ AP }^2
&=&
\myBox{ア}-\myBox{イ} \cos 2\theta \\[5pt] &=&
\myBox{ウ}-\myBox{エ} \cos^2 \theta \\[5pt] \end{eqnarray}である。また、 $\mathrm{ PQ }^2$ は\[ \mathrm{ PQ }^2=\myBox{オ}-\myBox{カ} \cos \theta \]である。

 $\dfrac{\pi}{3}\leqq \theta\lt \pi$ であるから、 $\myBox{キク}\lt \cos\theta\leqq \dfrac{\myBox{ケ}}{\myBox{コ}}$ である。したがって、 $\mathrm{ AP }^2+\mathrm{ PQ }^2$ は、 $\theta=\dfrac{\myBox{サ}}{\myBox{シ}}\pi$ のとき最大値 $\myBox{スセ}$ をとり、 $\theta=\dfrac{\pi}{\myBox{ソ}}$ のとき最小値 $\myBox{タ}$ をとる。

【広告】
本書は「超」公式集です。最強の公式だけを集めました。
『数学I・A』はたった14個、『数学II・B』はたった11個の少数精鋭です。
なぜ、こんなに少ないのか?
それは、一つ一つが基本的なのに、あなたの数学を変えてしまうくらいに深いからです。
お読みいただければわかるのですが、基本的とは簡単なことではありません。しかし、この、I・A、II・Bあわせて(たった)25個の公式をマスターした後に、あなたの目の前には新しい地平が広がっているはずです。これらの公式を九九のように覚えてしまうことによって、あなたの思考は気持ちが良いほどに身軽に、そして自由になるのです。 さあ、ぜひ本書を読んで、どんどんクリアーになっていく新しい世界をお楽しみください。
著者:松野陽一郎
出版社:旺文社
発売日:2021-09-16
ページ数:224 ページ
値段:¥1,430
(2021年09月 時点の情報です)

考え方

PQ の式変形が少し難しいかもしれません。3倍角があるからといって、3倍角の公式をいきなり使ってしまうと計算が大変になってしまいます。ここでの計算結果は後に響いてくるので、計算結果が間違っていないかどうか、 $\theta=0$ などとして、チェックすると安全です。

これを乗り越えるとかなり優しくなります。後半は、ほとんど二次関数の問題です。ソのところは、本来はサシのような式でもいいはずです。こうしたところにも優しさが見えます。

1 2