センター試験 数学I・数学A 2020年度 第3問 [2] 解説

【選択問題】(第3問~第5問から2問選択)

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は $\dfrac{\myBox{ウ}}{\myBox{エ}}$ である。また、コインを2回投げ終わって持ち点が1点である確率は $\dfrac{\myBox{オ}}{\myBox{カ}}$ である。

(2) 持ち点が再び0点になることが起こるのは、コインを $\myBox{キ}$ 回投げ終わったときである。コインを $\mybox{キ}$ 回投げ終わって持ち点が0点になる確率は $\dfrac{\myBox{ク}}{\myBox{ケ}}$ である。

(3) ゲームが終了した時点で持ち点が4点である確率は $\dfrac{\myBox{コ}}{\myBox{サシ}}$ である。

(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は $\dfrac{\myBox{ス}}{\myBox{セ}}$ である。

【広告】
日常学習と入試対策への必須問題を漏れなく収録。章トビラに、その章で扱う例題とコラムの一覧を掲載。本文は、定理や公式など、問題を解く上で基本となるものをまとめた「基本事項」、教科書で扱われているレベルの問題が中心の「基本例題」、入試対策に向けた、応用力の定着に適した問題がそろった「重要例題」などで構成。各単元末には、例題に関連する問題を取り上げた「EXERCISES」を収録。他の単元の内容が絡んだ問題や、応用度がかなり高い問題を題材とする例題は、「関連発展問題」として適宜章末などに収録。巻末には、基本~標準レベルの入試問題を中心に取り上げた「総合演習」、大学入学共通テストの対策ができる「実践編」を収録。
著者:チャート研究所
出版社:数研出版
発売日:2019-11-01
ページ数: ページ
値段:¥2,365
(2020年09月 時点の情報です)

考え方

よくある反復試行の問題です。ただ、「持ち点が0点になると終了する」というのがやっかいですね。これは、まずは「持ち点が0でも終了しない」としておいて、後から「途中で持ち点が0点になるケースを除外する」と考えるとわかりやすくなるでしょう。

1 2