共通テスト 数学II・数学B 2021年度追試 第4問 [1] 解説

【第3問~第5問から2問選択】

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}\def\dBox#1{\bbox[4px, border: 2px solid ]{\bbox[2px, border: 1px solid ]{\ \bf{ #1 }\ } }}\def\dbox#1{\bbox[4px, border: 1px solid ]{\bbox[2px, border: 1px solid ]{\ #1\ } }}$自然数 $n$ に対して、 $S_n=5^n-1$ とする。さらに、数列 $\{a_n\}$ の初項から第 $n$ 項までの和が $S_n$ であるとする。このとき、 $a_1=\myBox{ア}$ である。また、 $n\geqq 2$ のとき\[ a_n=\myBox{イ}\cdot\myBox{ウ}^{\ n-1} \]である。この式は $n=1$ のときも成り立つ。

 上で求めたことから、すべての自然数 $n$ に対して\[ \sum_{k=1}^n\frac{1}{a_k}=\dfrac{\myBox{エ}}{\myBox{オカ}}\left(1-\myBox{キ}^{\ -n}\right) \]が成り立つことがわかる。

【広告】

考え方

等比数列に関する基本的な問題です。和からもとの数列の一般項を求めたり、等比数列の和を計算する基本的な内容なので、分野全体を一通り勉強していれば難しいところはないでしょう。計算もそれほど複雑ではありません。

1 2