【必答問題】
問題編
問題
$\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}\def\dBox#1{\bbox[4px, border: 2px solid ]{\bbox[2px, border: 1px solid ]{\ \bf{ #1 }\ } }}\def\dbox#1{\bbox[4px, border: 1px solid ]{\bbox[2px, border: 1px solid ]{\ #1\ } }}$$g(x)=|x|(x+1)$ とおく。
点 $\mathrm{ P }(-1,0)$ を通り、傾きが $c$ の直線を $\ell$ とする。 $g'(-1)=\myBox{サ}$ であるから、 $0\lt c\lt\mybox{サ}$ のとき、曲線 $y=g(x)$ と直線 $\ell$ は3点で交わる。そのうちの1点は P であり、残りの2点を点 P に近い方から順に Q, R とすると、点 Q の $x$ 座標は $\myBox{シス}$ であり、点 R の $x$ 座標は $\myBox{セ}$ である。
また、 $0\lt c\lt \mybox{サ}$ のとき、線分 PQ と曲線 $y=g(x)$ で囲まれた図形の面積を $S$ とし、線分 QR と曲線 $y=g(x)$ で囲まれた図形の面積を $T$ とすると
\begin{eqnarray}
S &=& \dfrac{\myBox{ソ}c^3+\myBox{タ}c^2-\myBox{チ}c+1}{\myBox{ツ}} \\[5pt] T &=& c^{\ \myBox{テ}}
\end{eqnarray}である。