京都大学 理系 2018年度 第1問 解説

問題編

問題

 $0$ でない実数 a, b, c は次の条件(i)と(ii)を満たしながら動くものとする。

 (i) $1+c^2\leqq 2a$
 (ii) 2つの放物線 $C_1:y=ax^2$ と $C_2:y=b(x-1)^2+c$ は接している。

ただし、2つの曲線が接するとは、ある共有点において共通の接線をもつことであり、その共有点を接点という。

(1) $C_1$ と $C_2$ の接点の座標を ac を用いて表せ。

(2) $C_1$ と $C_2$ の接点が動く範囲を求め、その範囲を図示せよ。

【広告】
入試頻出の強調構文や倒置を、「強調構文に気づくか」という後づけの解説や、「倒置になっている」という結果論ではなく、「どうやって気づくのか?」「倒置を使うときのキモチ」を納得いくまで解説。“英文を読み解くために必要な文法や構文”に焦点を絞って解説。ただ英文の解析結果を述べるのではなく「英語を読むときのアタマの使い方」を説明。収録した英文は、あらゆる入試問題を分析して厳選。
著者: 関 正生
出版社: KADOKAWA/中経出版
発売日: 2011/09/06
380ページ

考え方

(1)は、「接点」という情報から式を2つ作ります。よくある方法です。

(2)は、条件(i)を変形していけば、範囲が得られます。しかし、「0でない実数」という条件を満たしているかは、注意深く検証する必要があります。