センター試験 数学I・数学A 2020年度追試 第1問 [3] 解説

【必答問題】

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$$a$ を $4$ 以上の定数とし、 $f(x)=(x-a)(x-4)+4$ とおく。

(1) 2次関数 $y=f(x)$ の最小値は $\dfrac{\myBox{トナ}}{\myBox{ニ}}a^2+\myBox{ヌ}a$ である。

(2) 2次関数 $y=f(x)$ の $a-2\leqq x\leqq a+2$ における最大値は $\myBox{ネ}a$ である。

 また、2次関数 $y=f(x)$ の $a-2\leqq x\leqq a+2$ における最小値は $4\leqq a\leqq \myBox{ノ}$ のとき、 $\dfrac{\mybox{トナ}}{\mybox{ニ}}a^2+\mybox{ヌ}a$ であり、 $\mybox{ノ}\lt a$ のとき、 $\myBox{ハヒ}a+\myBox{フヘ}$ である。

【広告】
青チャートが大学入学共通テストを見据え「増補改訂版」として発売
改訂版の巻末に実践編〔大学入学共通テストの準備・対策のためのコーナー〕として新傾向の問題を追加
実践編には関連する例題やコラムなどの参照先を示し、それらを振り返ることで理解が深まる仕組み
著者: チャート研究所
出版社: 数研出版
発売日: 2019/01/24

考え方

$a$ の値によって、関数も動くし区間も動く、ということで、考えづらいです。ただ、頂点、区間の両端の位置関係さえつかめれば、後の計算はそれほど大変ではありません。

解答欄から答えがほぼわかってしまうので、問題としては少しいまいちかもしれません。