東京大学 理系 2021年度 第1問 解説

問題編

問題

 $a,b$ を実数とする。座標平面上の放物線\[ C:\ y=x^2+ax+b \]は放物線 $y=-x^2$ と2つの共有点を持ち、一方の共有点の $x$ 座標は $-1\lt x\lt 0$ を満たし、他方の共有点の $x$ 座標は $0\lt x\lt 1$ を満たす。

(1) 点 $(a,b)$ のとりうる範囲を座標平面上に図示せよ。

(2) 放物線 $C$ の通りうる範囲を座標平面上に図示せよ。

【広告】
入試に出題される基本的な問題を『基礎問』として取り上げ、教科書から入試問題を解くための橋渡しを行います。
特に、私立大に出題が多い小問集合が確実にクリアできる力がつきます。
著者:上園信武
出版社:旺文社
発売日:2020-02-20
ページ数:300 ページ
値段:¥1,210
(2020年09月 時点の情報です)

考え方

(1)は $(a,b)$ の話で、(2)は $(x,y)$ の話なので、よく考えないと頭が混乱してきます。(2)は放物線を直接動かすことを考えるよりも、(1)の結果を利用することを考えましょう。

1 2