東京大学 理系 2021年度 第5問 解説

問題編

問題

 $\alpha$ を正の実数とする。 $0\leqq \theta\leqq \pi$ における $\theta$ の関数 $f(\theta)$ を、座標平面上の2点 $\mathrm{ A }(-\alpha,-3)$, $\mathrm{ P }(\theta+\sin\theta,\cos\theta)$ 間の距離 $\mathrm{ AP }$ の2乗として定める。

(1) $0\lt \theta\lt \pi$ の範囲に $f'(\theta)=0$ となる $\theta$ がただ1つ存在することを示せ。

(2) 以下が成り立つような $\alpha$ の範囲を求めよ。

 $0\leqq \theta\leqq \pi$ における $\theta$ の関数 $f(\theta)$ は、区間 $0\lt \theta\lt\dfrac{\pi}{2}$ のある点において最大になる。

【広告】
【画期的な歴史入門書と話題沸騰! 30万部突破!】
youtubeで話題! 現役教師の新感覚の世界史
今、一番売れている世界史本!

推理小説を読むように一気に読める!
"新感覚"の教科書にあなたも必ずハマる!

現役公立高校教師としては初めて、Youtubeに世界史の授業動画を公開し、
たちまち、大学受験生や社会人、教育関係者から「神授業! 」として話題沸騰の
現役・公立高校教師が書いた“新感覚"の世界史の教科書!
大学受験、学び直しにも。高校生から、主婦、社会人まで必読の1冊!
著者:山﨑 圭一
出版社:SBクリエイティブ
発売日:2018-08-18
ページ数:352 ページ
値段:¥1,650
(2021年09月 時点の情報です)

考え方

増減表をかいて考えるだけですが、計算間違いをしないように注意しないといけません。また、1回微分しただけではわからないので、ひたすら微分をしていくしかないです。図形的な観点から攻めていくことは難しいでしょう。

1 2