京都大学 理系 2019年度 第1問 解説

問題編

問題

 次の各問に答えよ。

問1 $0\lt\theta\lt\dfrac{\pi}{2}$ とする。 $\cos\theta$ は有理数ではないが、 $\cos 2\theta$ と $\cos 3\theta$ がともに有理数となるような $\theta$ の値を求めよ。ただし、 $p$ が素数のとき、 $\sqrt{p}$ が有理数でないことは証明なしに用いてよい。

問2 次の定積分の値を求めよ。

(1) $\displaystyle \int_0^{\frac{\pi}{4}} \frac{x}{\cos^2 x}dx$

(2) $\displaystyle \int_0^{\frac{\pi}{4}} \frac{dx}{\cos x}$

【広告】
教科書や従来の参考書では、いろいろ書かれているわりに、読者が一番知りたい肝心なことは省かれている傾向があります。本書は、ここを重点的に丁寧に解説しました。ですから、しっかり読んでもらえばスムーズに理解してもらえるはずです。本書は気楽に読めて即効的な力がつくことを謳うものではありません。しっかり読む人に、数学的な心と考えること理解することの喜びと力を伝えるものです。
著者:長岡 亮介
出版社:旺文社
発売日:2012-09-23
ページ数:752 ページ
値段:¥1,870
(2020年09月 時点の情報です)

考え方

問1は、 $\sin$ に関する情報がないので、 $\sin$ が出てこない公式を使って変形しましょう。

問2は、どちらもどこかで一度は計算している内容でしょう。よく練習していないと、とっさには出てこないかもしれません。特に、(2)は、流れが頭に入っていないと、その場で思いつくのは難しそうです。

小問ですが、どちらも簡単というわけではありません。

1 2