センター試験 数学II・数学B 2006年度 第3問 解説

問題編

【問題】
 a,b,cを相異なる実数とする。数列$\{x_n\}$は等差数列で、最初の3項が順にa,b,cであるとし、数列$\{y_n\}$は等比数列で、最初の3項が順にc,a,bであるとする。

(1) bcaを用いて\[ b=\frac{[アイ]}{[ウ]}a, \quad c=[エオ]a \]と表され、等差数列$\{x_n\}$の公差は$\displaystyle \frac{[カキ]}{[ク]}a$である。

(2) 等比数列$\{y_n\}$の公比は$\displaystyle \frac{[アイ]}{[ウ]}$であるから、$\{y_n\}$の初項から第8項までの和は、aを用いて\[ \frac{[ケコサ]}{[シス]}a \]と表される。

(3) 数列$\{z_n\}$は最初の3項が順にb,c,aであり、その階差数列$\{w_n\}$が等差数列であるとする。このとき、$\{w_n\}$の公差は$\displaystyle \frac{[セ]}{[ソ]}a$であり、$\{w_n\}$の一般項は\[ w_n = \frac{[タ]n-[チツ]}{[テ]}a \]である。したがって、数列$\{z_n\}$の一般項は、aを用いて\[ z_n = \frac{a}{[ト]} ([ナ]n^2-[ニヌ]n+[ネノ]) \]と表される。

【広告】
本書は「超」公式集です。最強の公式だけを集めました。
『数学I・A』はたった14個、『数学II・B』はたった11個の少数精鋭です。
なぜ、こんなに少ないのか?
それは、一つ一つが基本的なのに、あなたの数学を変えてしまうくらいに深いからです。
お読みいただければわかるのですが、基本的とは簡単なことではありません。しかし、この、I・A、II・Bあわせて(たった)25個の公式をマスターした後に、あなたの目の前には新しい地平が広がっているはずです。これらの公式を九九のように覚えてしまうことによって、あなたの思考は気持ちが良いほどに身軽に、そして自由になるのです。 さあ、ぜひ本書を読んで、どんどんクリアーになっていく新しい世界をお楽しみください。
著者:松野陽一郎
出版社:旺文社
発売日:2021-09-16
ページ数:224 ページ
値段:¥1,430
(2021年09月 時点の情報です)

【考え方】
ずっと文字が入ったままで扱いにくいですが、後半のaはおまけみたいな扱いになっているので、それほど気にする必要はありません。

一番初めの問題が、一番初めにしては難しいです。しかも、ここができないと後のすべての問題に影響してしまいます。公差と公比を文字で置いて、いくつかの式でこれらを消去する、という方針で解いていきます。

(2)は等比数列の和の公式を使うだけですね。(3)は階差数列が等差になるときを扱います。計算は煩雑ですが、最後の問題にしては計算量は少なめです。

1 2