京都大学 理系 2021年度 第2問 解説

問題編

問題

 曲線 $y=\dfrac{1}{2}(x^2+1)$ 上の点 P における接線は $x$ 軸と交わるとし、その交点を Q とおく。線分 PQ の長さを $L$ とするとき、 $L$ が取りうる値の最小値を求めよ。

【広告】

考え方

図形は複雑ではなく、 $L$ もそこまでめんどうな式にはなりません。最小値を求めるにはやることは決まっているので、計算を間違わないようにすすめていきましょう。

1 2