京都大学 理系 2021年度 第2問 解説

問題編

問題

 曲線 $y=\dfrac{1}{2}(x^2+1)$ 上の点 P における接線は $x$ 軸と交わるとし、その交点を Q とおく。線分 PQ の長さを $L$ とするとき、 $L$ が取りうる値の最小値を求めよ。

【広告】
ハイレベルな基礎の徹底の上に、本物の数学力が育つ。東大受験指導の名門・鉄緑会大阪校で実際に行われている「数学の基礎固め」。東大・京大・難関国立大学を目指す受験生のための、強固な数学の基礎力がつく一書。
著者:鉄緑会大阪校数学科
出版社:KADOKAWA
発売日:2015-11-28
ページ数:337 ページ
値段:¥2,200
(2021年09月 時点の情報です)

考え方

図形は複雑ではなく、 $L$ もそこまでめんどうな式にはなりません。最小値を求めるにはやることは決まっているので、計算を間違わないようにすすめていきましょう。

1 2