問題編
問題
投げたときに表が出る確率と裏が出る確率が等しい硬貨を用意する。数直線上に石を置き、この硬貨を投げて表が出れば数直線上で原点に関して対称な点に石を移動し、裏が出れば数直線上で座標 $1$ の点に関して対称な点に石を移動する。
(1) 石が座標 $x$ の点にあるとする。2回硬貨を投げたとき、石が座標 $x$ の点にある確率を求めよ。
(2) 石が原点にあるとする。 $n$ を自然数とし、 $2n$ 回硬貨を投げたとき、石が座標 $2n-2$ の点にある確率を求めよ。
【広告】
考え方
硬貨を1回投げたあとで、どこに移動するかをまず考えましょう。変わった移動に見えますが、よく考えるとどこに移動するかはわかりやすいです。
(2)は(1)を使います。投げる回数が $n$ 倍になっているので、(1)を $n$ 回行うと考えましょう。
1 2