京都大学 理系 2013年度 第6問 解説

問題編

問題

 投げたときに表が出る確率と裏が出る確率が等しい硬貨を用意する。数直線上に石を置き、この硬貨を投げて表が出れば数直線上で原点に関して対称な点に石を移動し、裏が出れば数直線上で座標 $1$ の点に関して対称な点に石を移動する。

(1) 石が座標 $x$ の点にあるとする。2回硬貨を投げたとき、石が座標 $x$ の点にある確率を求めよ。

(2) 石が原点にあるとする。 $n$ を自然数とし、 $2n$ 回硬貨を投げたとき、石が座標 $2n-2$ の点にある確率を求めよ。

【広告】
《新入試対応》
入試に出題される基本的な問題を『基礎問』として取り上げ、教科書から入試問題を解くための橋渡しを行います。
特に、私立大に出題が多い小問集合が確実にクリアできる力がつきます。
著者:上園信武
出版社:旺文社
発売日:2020-02-20
ページ数:300 ページ
値段:¥1,210
(2021年09月 時点の情報です)

考え方

硬貨を1回投げたあとで、どこに移動するかをまず考えましょう。変わった移動に見えますが、よく考えるとどこに移動するかはわかりやすいです。

(2)は(1)を使います。投げる回数が $n$ 倍になっているので、(1)を $n$ 回行うと考えましょう。

1 2