京都大学 文系 2019年度 第5問 解説

問題編

問題

 半径 $1$ の球面上の5点 $\mathrm{ A, B_1,B_2,B_3,B_4 }$ は、正方形 $\mathrm{ B_1B_2B_3B_4 }$ を底面とする四角錐をなしている。この5点が球面上を動くとき、四角錐 $\mathrm{ AB_1B_2B_3B_4 }$ の体積の最大値を求めよ。

【広告】
ファンタジーイラスト×リアルデータで贈るエンタメ学科ガイド。ライトな見た目とは裏腹に収録情報は骨太。伝統ある定番の学科から新進気鋭の学科まで、多様化する専攻分野の実態と卒業後の進路を、学費・取得資格&検定、進路&就職先といったお役立ち情報とともに楽しく解説していきます。
著者:石渡 嶺司
出版社:SBクリエイティブ
発売日:2017-09-15
ページ数:192 ページ
値段:¥1,100
(2020年09月 時点の情報です)

この問題は、京都大学 理系 2019年度 第5問 解説と同じです。