京都大学 文系 2019年度 第1問 解説

(注:このサイトには載せていませんが、実際の入試では、この問題には常用対数表がついていました)

問題編

問題

 次の各問に答えよ。

問1 $a$ は実数とする。 $x$ に関する整式 $x^5+2x^4+ax^3+3x^2+3x+2$ を整式 $x^3+x^2+x+1$ で割ったときの商を $Q(x)$, 余りを $R(x)$ とする。 $R(x)$ の $x$ の1次の項の係数が $1$ のとき、 $a$ の値を定め、さらに $Q(x)$ と $R(x)$ を求めよ。

問2 $8.94^{18}$ の整数部分は何桁か。また最高位からの2桁の数字を求めよ。例えば、 $12345.6789$ の最高位からの2桁は $12$ を指す。

【広告】
ハイレベルな基礎の徹底の上に、本物の数学力が育つ。東大受験指導の名門・鉄緑会大阪校で実際に行われている「数学の基礎固め」。東大・京大・難関国立大学を目指す受験生のための、強固な数学の基礎力がつく一書。
著者: 鉄緑会大阪校数学科
出版社: KADOKAWA
発売日: 2015/11/28
337ページ

考え方

問1は、割り算をするだけです。計算自体も、それほど複雑ではありません。サイトではデザインの都合上、筆算を載せていませんが、筆算で計算するのが普通でしょう。余りの係数がわかっているだけでは、剰余の定理を使う場面はありません。具体的な式が与えられているので、素直に割りましょう。

問2は、常用対数表を使いこなせるかが問われています。入試では、問題を解くときに必要な値だけが与えられていることが多いので、常用対数表を見て驚いた人もいるでしょう。整数部分を求める問題は、受験問題ではよくある内容です。後半部分は少しマイナーですが、似たような不等式の評価であることに気づけば、それほど難しくはないでしょう。