京都大学 文系 2019年度 第1問 解説

(注:このサイトには載せていませんが、実際の入試では、この問題には常用対数表がついていました)

問題編

問題

 次の各問に答えよ。

問1 $a$ は実数とする。 $x$ に関する整式 $x^5+2x^4+ax^3+3x^2+3x+2$ を整式 $x^3+x^2+x+1$ で割ったときの商を $Q(x)$, 余りを $R(x)$ とする。 $R(x)$ の $x$ の1次の項の係数が $1$ のとき、 $a$ の値を定め、さらに $Q(x)$ と $R(x)$ を求めよ。

問2 $8.94^{18}$ の整数部分は何桁か。また最高位からの2桁の数字を求めよ。例えば、 $12345.6789$ の最高位からの2桁は $12$ を指す。

【広告】
■これぞ京大! 不朽の名作・傑作選。究極の思考力問題集
■“京大らしいテーマ"(誘導がない! /論証しにくい! /京大名物・整数問題…)で編成
■自力で解くための底力を養う珠玉の64題

過去50年(最古は1956年)の京大の入試問題から、今の受験生に解いてほしい問題をセレクト。
「THE京大な問題」をテーマ別にまとめた「入試問題傑作選」。オリジナル解答・解説。
著者: 杉山義明
出版社: 教学社
発売日: 2018/11/28
240ページ

考え方

問1は、割り算をするだけです。計算自体も、それほど複雑ではありません。サイトではデザインの都合上、筆算を載せていませんが、筆算で計算するのが普通でしょう。余りの係数がわかっているだけでは、剰余の定理を使う場面はありません。具体的な式が与えられているので、素直に割りましょう。

問2は、常用対数表を使いこなせるかが問われています。入試では、問題を解くときに必要な値だけが与えられていることが多いので、常用対数表を見て驚いた人もいるでしょう。整数部分を求める問題は、受験問題ではよくある内容です。後半部分は少しマイナーですが、似たような不等式の評価であることに気づけば、それほど難しくはないでしょう。