センター試験 数学II・数学B 2019年度 第4問 解説

【選択問題】(第3問~第5問から2問選択)

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$四角形 ABCD を底面とする四角錐 OABCD を考える。四角形 ABCD は、辺 AD と辺 BC が平行で、 $\mathrm{ AB=CD }$, $\mathrm{ \angle ABC=\angle BCD }$ を満たすとする。さらに、 $\overrightarrow{ \mathrm{ OA } }=\vec{a}$, $\overrightarrow{ \mathrm{ OB } }=\vec{b}$, $\overrightarrow{ \mathrm{ OC } }=\vec{c}$ として
\begin{eqnarray}
|\vec{a}| &=& 1 \\[5pt] |\vec{b}| &=& \sqrt{3} \\[5pt] |\vec{c}| &=& \sqrt{5} \\[5pt] \vec{a}\cdot\vec{b} &=& 1 \\[5pt] \vec{b}\cdot\vec{c} &=& 3 \\[5pt] \vec{c}\cdot\vec{a} &=& 0 \\[5pt] \end{eqnarray}であるとする。

(1) $\mathrm{ \angle AOC }=\myBox{アイ}^{\circ}$ により、三角形 OAC の面積は $\dfrac{\sqrt{\myBox{ウ}}}{\myBox{エ}}$ である。

(2) $\overrightarrow{ \mathrm{ BA } }\cdot \overrightarrow{ \mathrm{ BC } }=\myBox{オカ}$, $\Big| \overrightarrow{ \mathrm{ BA } } \Big|=\sqrt{\myBox{キ}}$, $\Big| \overrightarrow{ \mathrm{ BC } } \Big|=\sqrt{\myBox{ク}}$ であるから、 $\angle \mathrm{ ABC }=\myBox{ケコサ}^{\circ}$ である。さらに、辺 AD と辺 BC が平行であるから、 $\angle \mathrm{ BAD }=\angle \mathrm{ ADC }=\myBox{シス}^{\circ}$ である。よって、 $\overrightarrow{ \mathrm{ AD } }=\myBox{セ} \overrightarrow{ \mathrm{ BC } }$ であり\[ \overrightarrow{ \mathrm{ OD } }=\vec{a}-\myBox{ソ}\vec{b}+\myBox{タ}\vec{c} \]と表される。また、四角形 ABCD の面積は $\dfrac{\myBox{チ}\sqrt{\myBox{ツ}}}{\myBox{テ}}$ である。

(3) 三角形 OAC を底面とする三角錐 BOAC の体積 $V$ を求めよう。

 3点 O, A, C の定める平面 $\alpha$ 上に、点 H を $\overrightarrow{ \mathrm{ BH } }\perp \vec{a}$ と $\overrightarrow{ \mathrm{ BH } }\perp \vec{c}$ が成り立つようにとる。 $\Big|\overrightarrow{ \mathrm{ BH } }\Big|$ は三角錐 BOAC の高さである。 H は $\alpha$ 上の点であるから、実数 s, t を用いて $\overrightarrow{ \mathrm{ OH } }=s\vec{a}+t\vec{c}$ の形に表される。

 $\overrightarrow{ \mathrm{ BH } }\cdot{a}=\myBox{ト}$, $\overrightarrow{ \mathrm{ BH } }\cdot{c}=\mybox{ト}$ により、 $s=\myBox{ナ}$, $t=\dfrac{\myBox{ニ}}{\myBox{ヌ}}$ である。よって、 $\Big|\overrightarrow{ \mathrm{ BH } }\Big|=\dfrac{\sqrt{\myBox{ネ}}}{\myBox{ノ}}$ が得られる。したがって、(1)により、 $V=\dfrac{\myBox{ハ}}{\myBox{ヒ}}$ であることがわかる。

(4) (3)の $V$ を用いると、四角錐 OABCD の体積は $\myBox{フ}V$ と表せる。さらに、四角形 ABCD を底面とする四角錐 OABCD の高さは $\dfrac{\sqrt{\myBox{ヘ}}}{\myBox{ホ}}$ である。

【広告】

考え方

空間ベクトルの問題ですが、(1)(2)では、あまり空間を意識する必要はありません。(2)では、四角形 ABCD を書いて考えてみましょう。

(3)では、内積を用いた計算です。それほど計算は多くありません。

(4)は、ベクトルの問題というよりも、図形の問題です。どこを底面とするか、視点を変えて考えましょう。体積から高さを求めるのもよくある手法です。体積の公式から逆算しましょう。