センター試験 数学I・数学A 2018年度 第4問 解説

【選択問題】(第3問~第5問から2問選択)

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$(1) $144$ を素因数分解すると\[ 144=2^{\myBox{ア}} \times \myBox{イ}^{\myBox{ウ}} \]であり、 $144$ の正の約数の個数は $\myBox{エオ}$ 個である。

(2) 不定方程式\[ 144x-7y=1 \]の整数解 x, y の中で、 x の絶対値が最小になるのは\[ x=\myBox{カ}, \ y=\myBox{キク} \]であり、すべての整数解は、 k を整数として\[ x=\myBox{ケ} k +\mybox{カ}, \ y=\myBox{コサシ}k+\mybox{キク} \]と表される。

(3) $144$ の倍数で、 $7$ で割ったら余りが $1$ となる自然数のうち、正の約数の個数が $18$ 個である最小のものは $144 \times \myBox{ス}$ であり、正の約数の個数が $30$ 個である最小のものは $144 \times \myBox{セソ}$ である。

【広告】
河合塾数学科の考える「思考力・判断力・表現力」をまとめ、これに基づいて過去の入試問題を分析し、その中から思考力を養うために経験しておきたい問題を収集し解答・解説を収録。また、思考調査の問題を参考にして「共通テスト型問題」を作成。
著者: 河合塾数学科
出版社: 河合出版
発売日: 2018/06/01
125ページ

考え方

(1)の約数の個数は、最悪、数え上げることもできます(それだと後半ができませんが)。

(2)の不定方程式は、よく出題されているものです。それほどひねりもありません。

(3)は、約数の個数について、扱いに慣れていないと難しいかもしれません。(2)をどう使うかがわからないと、特に後半が考えられません。