センター試験 数学I・数学A 2018年度 第3問 解説

【選択問題】(第3問~第5問から2問選択)

解答編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$一般に、事象 A の確率を $P(A)$ で表す。また、事象 A の余事象を $\bar{A}$ と表し、二つの事象 A, B の積事象を $A\cap B$ と表す。

 大小2個のさいころを同時に投げる試行において
 A を「大きいさいころについて、4の目が出る」という事象
 B を「2個のさいころの出た目の和が7である」という事象
 C を「2個のさいころの出た目の和が9である」という事象
とする。

(1) 事象 A, B, C の確率は、それぞれ\[ P(A)=\frac{\myBox{ア}}{\myBox{イ}}, \ P(B)=\frac{\myBox{ウ}}{\myBox{エ}}, \ P(C)=\frac{\myBox{オ}}{\myBox{カ}} \]である。

解説

大きいさいころの目の出方は6通りなので、大きいさいころの目が4である確率は、 $\dfrac{1}{6}$ となります。

2このさいころの目の和が7となる(大、小)の組合せは、\[ (1,6), \ (2,5), \ (3,4), \ (4,3), \ (5,2), \ (6,1) \]の6通りです。すべての目の出方は36通りなので、\[ P(B)=\frac{6}{36}=\frac{1}{6} \]となります。

2このさいころの目の和が9となる(大、小)の組合せは、\[ (3,6), \ (4,5), \ (5,4), \ (6,3) \]の4通りです。なので、\[ P(C)=\frac{4}{36}=\frac{1}{9} \]となります。

解答

アイ:16
ウエ:16
オカ:19

解答編 つづき

問題

(2) 事象 C が起こったときの事象 A が起こる条件付き確率は $\dfrac{\myBox{キ}}{\myBox{ク}}$ であり、事象 A が起こったときの事象 C が起こる条件付き確率は $\dfrac{\myBox{ケ}}{\myBox{コ}}$ である。

解説

条件付き確率を考えるために、まず A かつ C が起こる確率を考えましょう。これは、A より、大きいさいころの目が $4$ で、 C より、小さいさいころの目が $5$ である、という事象が起こる確率なので、 $\dfrac{1}{36}$ であることがわかります。

事象 C が起こったときの事象 A が起こる条件付き確率は、先ほど求めた確率を、 C が起こる確率で割ればいいので\[ \frac{1}{36}\div\frac{1}{9} =\frac{1}{4}\]となります。

事象 A が起こったときの事象 C が起こる条件付き確率は、先ほど求めた確率を、 A が起こる確率で割ればいいので\[ \frac{1}{36}\div\frac{1}{6} =\frac{1}{6}\]となります。

解答

キク:14
ケコ:16

【広告】
河合塾数学科の考える「思考力・判断力・表現力」をまとめ、これに基づいて過去の入試問題を分析し、その中から思考力を養うために経験しておきたい問題を収集し解答・解説を収録。また、思考調査の問題を参考にして「共通テスト型問題」を作成。
著者: 河合塾数学科
出版社: 河合出版
発売日: 2018/06/01
125ページ

解答編 つづき

問題

(3) 次の $\mybox{サ}, \mybox{シ}$ に当てはまるものを、下の 0 ~ 2 のうちからそれぞれ一つ選べ。ただし、同じものを繰り返し選んでもよい。

 $P(A\cap B) \myBox{サ}P(A)P(B)$
 $P(A\cap C) \myBox{シ}P(A)P(C)$

 0: $\lt$
 1: $=$
 2: $\gt$

解説

$A\cup B$ が起こるのは、大きいさいころの目が $4$ で、小さいさいころの目が $3$ のときだけなので、\[ P(A\cap B)=\frac{1}{36} \]です。(1)より、これは $P(A)P(B)$ と等しくなります。

$A\cup C$ が起こるのは、大きいさいころの目が $4$ で、小さいさいころの目が $5$ のときだけなので、\[ P(A\cap C)=\frac{1}{36} \]です。(1)より、これは $P(A)P(C)$ より大きくなります。

解答

サシ:12

解答編 つづき

問題

(4) 大小2個のさいころを同時に投げる試行を2回繰り返す。1回目に事象 $A\cap B$ が起こり、2回目に事象 $\bar{A}\cap C$ が起こる確率は、 $\dfrac{\myBox{ス}}{\myBox{セソタ}}$ である。三つの事象 A, B, C がいずれもちょうど1回ずつ起こる確率は $\dfrac{\myBox{チ}}{\myBox{ツテ}}$ である。

解説

1回目に $A\cap B$ が起こる確率は、(3)で考えた通り、 $\dfrac{1}{36}$ です。また、2回目に $\bar{A}\cap C$ が起こるのは、(大、小)の組合せが、\[ (3,6), \ (5,4), \ (6,3) \]の3通りなので、 $\dfrac{3}{36}$ です。なので、1回目に事象 $A\cap B$ が起こり、2回目に事象 $\bar{A}\cap C$ が起こる確率は、\[ \frac{1}{36} \times \frac{3}{36}=\frac{1}{432} \]となります。

2回試行を繰り返して、 A, B, C が1回ずつ起こる場合は、

  • 1回目に $A\cap B$ 、2回目に $\bar{A}\cap C$
  • 1回目に $A\cap C$ 、2回目に $\bar{A}\cap B$
  • 1回目に $\bar{A}\cap C$ 、2回目に $A\cap B$
  • 1回目に $\bar{A}\cap B$ 、2回目に $A\cap C$

のどれかです。 B, C が同時に起こることはないので、これですべてです。

1つ目と3つ目は、先ほど求めた通り、どちらも確率は $\dfrac{1}{432}$ となります。2つ目を考えましょう。

$\bar{A}\cap B$ が起こるのは、(大、小)の組合せが、\[ (1,6), \ (2,5), \ (3,4), \ (5,2), \ (6,1) \]の5通りなので、 $\dfrac{5}{36}$ です。よって、1回目に $A\cap C$ 、2回目に $\bar{A}\cap B$ となる確率は
\begin{eqnarray}
\frac{1}{36} \times \frac{5}{36}=\frac{5}{36^2}
\end{eqnarray}となります。

以上から、求める確率は
\begin{eqnarray}
\frac{3+5+3+5}{36^2}=\frac{16}{36^2}=\frac{1}{9^2}=\frac{1}{81}
\end{eqnarray}となります。

解答

チツテ:181