東京大学 文系 2013年度 第1問 解説

問題編

問題

 関数 $y=x(x-1)(x-2)$ のグラフを $C$ 、原点 O を通る傾き $t$ の直線を $\ell$ とし、 $C$ と $\ell$ が O 以外に共有点をもつとする。 $C$ と $\ell$ の共有点を O, P, Q とし、 $|\overrightarrow{ \mathrm{ OP } }|$, $|\overrightarrow{ \mathrm{ OQ } }|$ の積を $g(t)$ とおく。ただし、それら共有点の1つが接点である場合は、 O, P, Q のうち2つが一致して、その接点であるとする。関数 $g(t)$ の増減を調べ、その極値を求めよ。

【広告】
本書は、東京大学→JAXA→「数学に強い塾」として全国3校掲載の1つに選ばれた人気数学塾塾長による、一生役立つ思考力がマスターできる本です。
著者:永野 裕之
出版社:大和書房
発売日:2018-08-22
ページ数:208 ページ
値段:¥1,760
(2020年09月 時点の情報です)

考え方

$|\overrightarrow{ \mathrm{ OP } }|$, $|\overrightarrow{ \mathrm{ OQ } }|$ の積が、一見めんどくさそうですが、3点は $\ell$ 上の点であることを考えれば、実はそんなに複雑な式にはなりません。絶対値を含む関数の増減表は文系の範囲ではそんなに出てこないので慣れていないと戸惑ってしまうかもしれません。

1 2