共通テスト 数学II・数学B 2021年度 第4問 解説

【第3問~第5問から2問選択】

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$初項 $3$、公差 $p$ の等差数列を $\{a_n\}$ とし、初項 $3$ 、公比 $r$ の等比数列を $\{b_n\}$ とする。ただし、 $p\ne 0$ かつ $r\ne 0$ とする。さらに、これらの数列が次を満たすとする。\[ a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0\quad(n=1,2,3,\cdots)\ \cdots① \]

(1) $p$ と $r$ の値を求めよう。自然数 $n$ について、 $a_n$, $a_{n+1}$, $b_n$ はそれぞれ
\begin{eqnarray}
a_n &=& \myBox{ア}+(n-1)p \quad\cdots② \\[5pt] a_{n+1} &=& \mybox{ア}+np \quad\cdots③ \\[5pt] b_n &=& \myBox{イ}r^{n-1}
\end{eqnarray}と表される。 $r\ne 0$ により、すべての自然数 $n$ について、 $b_n\ne 0$ となる。 $\dfrac{b_{n+1}}{b_n}=r$ であることから、①の両辺を $b_n$ で割ることにより\[ \myBox{ウ}a_{n+1}=r \left(a_n+\myBox{エ}\right) \quad\cdots④ \]が成り立つことがわかる。④に②と③を代入すると\[ \left(r-\myBox{オ}\right)pn = r\left(p-\myBox{カ}\right)+\myBox{キ} \quad\cdots⑤ \]となる。⑤がすべての $n$ で成り立つことおよび $p\ne 0$ により、 $r=\mybox{オ}$ を得る。さらに、このことから、 $p=\myBox{ク}$ を得る。
 以上から、すべての自然数 $n$ について、 $a_n$ と $b_n$ が正であることもわかる。

(2) $p=\mybox{ク}$, $r=\mybox{オ}$ であることから、 $\{a_n\}$, $\{b_n\}$ の初項から第 $n$ 項までの和は、それぞれ次の式で与えられる。
\begin{eqnarray}
\sum_{k=1}^n a_k &=& \frac{\myBox{ケ}}{\myBox{コ}} n\left(n+\myBox{サ}\right) \\[5pt] \sum_{k=1}^n b_k &=& \myBox{シ}\left(\mybox{オ}^n-\myBox{ス}\right) \\[5pt] \end{eqnarray}

(3) 数列 $\{a_n\}$ に対して、初項 $3$ の数列 $\{c_n\}$ が次を満たすとする。\[ a_nc_{n+1}-4a_{n+1}c_n +3c_{n+1}=0\quad(n=1,2,3,\cdots)\ \cdots⑥\]

 $a_n$ が正であることから、⑥を変形して、 $c_{n+1}=\dfrac{\myBox{セ}a_{n+1}}{a_n+\myBox{ソ}}c_n$ を得る。さらに、 $p=\mybox{ク}$ であることから、数列 $\{c_n\}$ は $\myBox{タ}$ ことがわかる。

$\mybox{タ}$ の解答群

 0: すべての項が同じ値をとる数列である
 1: 公差が0でない等差数列である
 2: 公比が1より大きい等比数列である
 3: 公比が1より小さい等比数列である
 4: 等差数列でも等比数列でもない

(4) $q,u$ が定数で、 $q\ne 0$ とする。数列 $\{b_n\}$ に対して、初項 $3$ の数列 $\{d_n\}$ が次を満たすとする。\[ d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0\quad(n=1,2,3,\cdots)\ \cdots⑦ \]

 $r=\mybox{オ}$ であることから、⑦を変形して $d_{n+1}=\dfrac{\myBox{チ}}{q}(d_n+u)$ を得る。したがって、数列 $\{d_n\}$ が、公比が 0 より大きく 1 より小さい等比数列となるための必要十分条件は、 $q\gt \myBox{ツ}$ かつ $u=\myBox{テ}$ である。

【広告】

考え方

見た目はめんどくさそうですが、誘導の通りに式変形をしていくだけです。数列とあまり関係のない式変形も多いです。

1 2