京都大学 理学部特色入試 2021年度 第3問 解説

問題編

問題

 以下の条件(i), (ii), (iii) を満たす実数の列 $x_1,x_2,\cdots,x_{1000}$ は存在するか。

(i) $x_1=\dfrac{1}{2}$

(ii) $k=2,3,\cdots, 1000$ に対し、 $x_k$ は\[ \frac{x_{k-1}+99}{100},\ -\frac{100x_{k-1}}{99x_{k-1}-1} \]のいずれかに等しい。ただし、 $x_{k-1}=\dfrac{1}{99}$ のときは $x_k=\dfrac{x_{k-1}+99}{100}$ とする。

(iii) $\dfrac{49}{100}\lt x_{1000}\lt\dfrac{51}{100}$

【広告】
入試に出題される基本的な問題を『基礎問』として取り上げ、教科書から入試問題を解くための橋渡しを行います。
特に、私立大に出題が多い小問集合が確実にクリアできる力がつきます。
著者:上園信武
出版社:旺文社
発売日:2020-02-20
ページ数:300 ページ
値段:¥1,210
(2020年09月 時点の情報です)

考え方

なんだかよくわからない式で、 $99$ もどこから出てくるのかわからず、考えにくいです。

とりあえず、 $x_2$ を考えてみると、 $1$ か $-1$ にすごく近いことがわかります。それ以降にどのような値をとりうるか考えてみましょう。

特に2つ目の式がやっかいで、これを無理やりいろいろ変形しようとすると、泥沼にはまってしまいます。

1 2