京都大学 理系 2016年度 第3問 解説

問題編

【問題】
四面体$\mathrm{ OABC }$が次の条件をみたすならば、それは正四面体であることを示せ。
 条件:頂点A、B、Cからそれぞれの対面を含む平面へ下した垂線は対面の外心を通る。

ただし、四面体にある頂点の対面とは、その頂点を除くほかの3つの頂点がなす三角形のことをいう。

【広告】
本書は、東京大学→JAXA→「数学に強い塾」として全国3校掲載の1つに選ばれた人気数学塾塾長による、一生役立つ思考力がマスターできる本です。
著者:永野 裕之
出版社:大和書房
発売日:2018-08-22
ページ数:208 ページ
値段:¥1,760
(2020年09月 時点の情報です)

【考え方】
ベクトルなどを使って計算し始めたくなりますが、そうすると罠にはまってしまいます。条件を読むと、垂線があり、外接円の半径があるので、実はもうほとんど辺の長さがわかるところまで来ています。図形的に解くのが一番簡単です。

なお、文系第4問に、これと1文字だけ違う問題が出題されています。

1 2