京都大学 理系 2006年度 第4問 解説

問題編

【問題】
 2以上の自然数nに対し、$n$と$n^2+2$がともに素数になるのは$n=3$の場合に限ることを示せ。

【広告】
教科書や従来の参考書では、いろいろ書かれているわりに、読者が一番知りたい肝心なことは省かれている傾向があります。本書は、ここを重点的に丁寧に解説しました。ですから、しっかり読んでもらえばスムーズに理解してもらえるはずです。本書は気楽に読めて即効的な力がつくことを謳うものではありません。しっかり読む人に、数学的な心と考えること理解することの喜びと力を伝えるものです。
著者:長岡 亮介
出版社:旺文社
発売日:2012-09-23
ページ数:752 ページ
値段:¥1,870
(2020年09月 時点の情報です)

【考え方】
これはよく読むと、「nが3より大きい素数のとき、$n^2+2$は素数にならない」ということを示せばいいということがわかります。

$n^2+2$を計算してみると、$n$が5のときは27、7のときは51、11のときは123、13のときは171となり、確かに素数にはなりません。よく見ると3の倍数になっています。「3より大きい素数」は3で割り切れませんが、3で割り切れない整数を2乗すると、3で割った余りが1になるので、このことを使って解答を書いていきます。

1 2