京都大学 理系 2006年度 第1問 解説

問題編

【問題】
 $Q(x)$を2次式とする。整式$P(x)$は$Q(x)$では割り切れないが、$\{P(x)\}^2$は$Q(x)$で割り切れるという。このとき2次方程式$Q(x)=0$は重解を持つことを示せ。

【広告】
この本のテーマは《伝える》ことです。私たちは、この本で、数学的に正当な思考・数学的な事実を、どうすれば文章にして他者に伝えられるか、懸命に説明しています。
ちょっとした言葉づかい、論理的な説明の順序、条件と命題の違いの意識、いろいろな文字の立場の理解・・・・・・きっと、読者の皆さんの考えを読み手に《伝える》ために、すぐ役立つはずです。
著者: 﨑山 理史・松野 陽一郎
出版社: 旺文社
発売日: 2018/09/18
192ページ

【考え方】
$Q(x)$は2次式なので、$P(x)$を割った余りは1次式か定数になります。これを用いて、$\{P(x)\}^2$を$Q(x)$で割り切れる、という条件を変形していけば、解くことができます。