京都大学 文系 2013年度 第2問 解説

問題編

問題

 平行四辺形 ABCD において、辺 AB を $1:1$ に内分する点を E、辺 BC を $2:1$ に内分する点を F、辺 CD を $3:1$ に内分する点を G とする。線分 CE と線分 FG の交点を P とし、線分 AP を延長した直線と辺 BC の交点を Q とするとき、比 AP:PQ を求めよ。

【広告】
河合塾数学科の考える「思考力・判断力・表現力」をまとめ、これに基づいて過去の入試問題を分析し、その中から思考力を養うために経験しておきたい問題を収集し解答・解説を収録。また、思考調査の問題を参考にして「共通テスト型問題」を作成。
著者:河合塾数学科
出版社:河合出版
発売日:2018-06-01
ページ数:125 ページ
値段:¥1,430
(2020年09月 時点の情報です)

考え方

この問題は理系第1問と同じなので、理系のページをご覧ください。