京都大学 文系 2013年度 第4問 解説

問題編

問題

 $\alpha,\beta$ を実数とする。 $xy$ 平面内で、点 $(0,3)$ を中心とする円 $C$ と放物線\[ y=-\dfrac{x^2}{3}+\alpha x-\beta \]が点 $\mathrm{ P }(\sqrt{3},0)$ を共有し、さらに P における接線が一致している。このとき以下の問に答えよ。

(1) $\alpha,\beta$ の値を求めよ。

(2) 円 $C$ 、放物線 $y=-\dfrac{x^2}{3}+\alpha x-\beta$ および $y$ 軸で囲まれた部分の面積を求めよ。

【広告】
現役公立高校教師としては初めて、Youtubeに世界史の授業動画を公開し、たちまち、大学受験生や社会人、教育関係者から「神授業! 」として話題沸騰の現役・公立高校教師が書いた"新感覚"の世界史の教科書!大学受験、学び直しにも。高校生から、主婦、社会人まで必読の1冊!
著者:斎藤充
出版社:SBクリエイティブ
発売日:2018-08-18
ページ数:352 ページ
値段:¥1,650
(2020年10月 時点の情報です)

考え方

(1)は、接線が一致していることから2つの条件式を導いて連立方程式を解きます。

(2)は、直接積分することはできませんが、図をかいてどの部分の面積を出すのかを考えれば、図形をどう変形すればいいかわかりやすいでしょう。

1 2