センター試験 数学II・数学B 2020年度追試 第4問 解説

【選択問題】(第3問~第5問から2問選択)

問題編

問題

 $\def\myBox#1{\bbox[3px, border:2px solid]{\ \bf{ #1 }\ }}\def\mybox#1{\bbox[4px, border:1px solid gray]{\ #1\ }}$1辺の長さが $1$ のひし形 ABCD において、 $\angle \mathrm{BAD} \gt 90^{\circ}$ とする。直線 BC 上に、点 C とは異なる点 E を、 $|\overrightarrow{ \mathrm{ DE } }|=1$ を満たすようにとる。以下、 $\overrightarrow{ \mathrm{ AB } }=\vec{p}$, $\overrightarrow{ \mathrm{ AD } }=\vec{q}$ とし、 $\vec{p}\cdot \vec{q}=x$ とおく。

(1) $|\overrightarrow{ \mathrm{ BD } }|^2=\myBox{ア}-\myBox{イ}x$ である。

(2) $\overrightarrow{ \mathrm{ AD } }$ と $\overrightarrow{ \mathrm{ BE } }$ は平行なので、実数 $s$ を用いて $\overrightarrow{ \mathrm{ AE } }=\vec{p}+s\vec{q}$ と表すことができる。 $|\overrightarrow{ \mathrm{ DE } }|=1$ であることと、点 E は点 C と異なる点であることにより、 $s=\myBox{ウエ}x+\myBox{オ}$ である。

(3) $|\overrightarrow{ \mathrm{ BD } }|=|\overrightarrow{ \mathrm{ BE } }|$ を満たす $x$ の値を求めよう。

 (2)により、 $\overrightarrow{ \mathrm{ AE } }=\vec{p}+\left(\mybox{ウエ}x+\mybox{オ}\right)\vec{q}$ である。 $|\overrightarrow{ \mathrm{ BD } }|=|\overrightarrow{ \mathrm{ BE } }|$ と $\angle \mathrm{BAD}\gt 90^{\circ}$ により、 $x=\dfrac{\myBox{カ}-\sqrt{\myBox{キ}}}{\myBox{ク}}$ が得られる。

 したがって\[ \overrightarrow{ \mathrm{ AE } }=\vec{p}+\frac{\myBox{ケ}+\sqrt{\myBox{コ}}}{\myBox{サ}} \vec{q} \quad\cdots ① \]である。

(4) $x$ を(3)で求めた値とし、点 F を直線 AC に関して点 E と対称な点とする。 $|\overrightarrow{ \mathrm{ EF } }|$ を求めよう。

 点 B と点 D が直線 AC に関して対称な点であることに注意すると、①により、 $\overrightarrow{ \mathrm{ AF } }=\dfrac{\myBox{シ}+\sqrt{\myBox{ス}}}{\myBox{セ}}\vec{p}+\vec{q}$ と表せる。したがって、 $\overrightarrow{ \mathrm{ EF } }=\dfrac{\myBox{ソタ}+\sqrt{\myBox{チ}}}{\myBox{ツ}}\overrightarrow{ \mathrm{ DB } }$ である。

 また、 $|\overrightarrow{ \mathrm{ BD } }|=|\overrightarrow{ \mathrm{ BE } }|$ であり、(2)により $\overrightarrow{ \mathrm{ BE } }=\left(\mybox{ウエ}x+\mybox{オ}\right)\vec{q}$ となるので、 $|\overrightarrow{ \mathrm{ BD } }|=\dfrac{\myBox{テ}+\sqrt{\myBox{ト}}}{\myBox{ナ}}$ を得る。ゆえに、 $|\overrightarrow{ \mathrm{ EF } }|=\myBox{ニ}$ である。

(5) $x$ を(3)で求めた値とし、点 R を $\triangle \mathrm{ ABD }$ の外接円の中心とする。 $\overrightarrow{ \mathrm{ AR } }$ を $\vec{p}$ と $\vec{q}$ を用いて表そう。

 $\triangle \mathrm{ ABD }$ は $\mathrm{AB}=\mathrm{AD}$ を満たす二等辺三角形であるから、点 R は直線 AC 上にある。点 F を(4)で定めた点とし、線分 AD の中点を M とする。(4)の結果を用いることにより、 $\overrightarrow{ \mathrm{ AD } }$ と $\overrightarrow{ \mathrm{ FM } }$ は垂直であることが確かめられる。よって、点 R は直線 AC と直線 FM の交点であり、実数 $t$ を用いて $\overrightarrow{ \mathrm{ AR } }=t \overrightarrow{ \mathrm{ AF } }+(1-t)\overrightarrow{ \mathrm{ AM } }$ と表すことができる。 $t$ を求めることにより、 $\overrightarrow{ \mathrm{ AR } }=\dfrac{\myBox{ヌ}+\sqrt{\myBox{ネ}}}{\myBox{ノハ}} \left(\vec{p}+\vec{q}\right)$ が得られる。

【広告】
青チャートが大学入学共通テストを見据え「増補改訂版」として発売
著者:チャート研究所
出版社:数研出版
発売日:2019-01-24
ページ数: ページ
値段:¥2,101
(2020年09月 時点の情報です)

考え方

計算は少し大変ですが、誘導は丁寧なので、進めていくこと自体はできると思います。ただ、どんな図形を扱っているのかは、きれいな図をかかないと気づきにくいかもしれません(気づいたところで計算が楽になるわけではないですが)。

1 2