東京大学 理系 2017年度 第3問 解説

問題編

問題

 複素数平面上の原点以外の点 z に対して、 $w=\dfrac{1}{z}$ とする。

(1) $\alpha$ を $0$ でない複素数とし、点 $\alpha$ と原点 O を結ぶ線分の垂直二等分線を L とする。点 z が直線 L 上を動くとき、点 w の軌跡は円から1点を除いたものになる。この円の中心と半径を求めよ。

(2) $1$ の3乗根のうち、虚部が正であるものを $\beta$ とする。点 $\beta$ と点 $\beta^2$ を結ぶ線分上を点 z が動くときの点 w の軌跡を求め、複素数平面上に図示せよ。

【広告】
教科書や従来の参考書では、いろいろ書かれているわりに、読者が一番知りたい肝心なことは省かれている傾向があります。本書は、ここを重点的に丁寧に解説しました。ですから、しっかり読んでもらえばスムーズに理解してもらえるはずです。本書は気楽に読めて即効的な力がつくことを謳うものではありません。しっかり読む人に、数学的な心と考えること理解することの喜びと力を伝えるものです。
著者:長岡 亮介
出版社:旺文社
発売日:2012-09-23
ページ数:752 ページ
値段:¥1,870
(2020年09月 時点の情報です)

考え方

(1)はほとんど答えが書かれています。垂直二等分線を式で表して考えましょう。実部・虚部と分けるのではなく、複素数の絶対値のまま考えていくほうがいいでしょう。

(2)は(1)から円の一部になることはすぐにわかります。線分の上だけしか移動しないことを言いかえれば、求める軌跡が得られます。

1 2