東京大学 理系 2006年度 第5問 解説

問題編

【問題】
 $\displaystyle a_1=\frac{1}{2}$とし、数列$\{a_n\}$を漸化式\[ a_{n+1} = \frac{a_n}{(1+a_n)^2} \quad (n=1,2,3,\cdots) \]によって定める。このとき、以下の問いに答えよ。

(1) 各$n=1,2,3,\cdots$に対し$\displaystyle b_n=\frac{1}{a_n}$とおく。$n\gt 1$のとき、$b_n\gt 2n$となることを示せ。

(2) $\displaystyle \lim_{n\to\infty} \frac{1}{n} (a_1+a_2+\cdots+a_n)$を求めよ。

(3) $\displaystyle \lim_{n\to\infty} n a_n$を求めよ。

【広告】
Z会オリジナル模試(5回分)に加え、平成30年度試行調査を掲載しています。オリジナル模試で実戦力を養成したあとは、試行調査を用いて実力を確認することができます。★第3問の読み上げ回数変更にも対応
著者:Z会編集部
出版社:Z会
発売日:2020-06-08
ページ数:264 ページ
値段:¥1,320
(2020年10月 時点の情報です)

【考え方】
(1)は数学的帰納法を使えばすぐに示せます。

(2)は、上から積分で評価してはさみうち、というよくある方法です。

問題は(3)です。(2)をじっと見ていても何も浮かんできません。漸化式をひっくり返した式をよく見て、(2)が使えるように変形すれば、$na_n$を作り出すことができますが、なかなかひらめかないと思います。

1 2