東京大学 文系 2019年度 第1問 解説

問題編

問題

 座標平面の原点を O とし、 $\mathrm{ O }$, $\mathrm{ A }(1,0)$, $\mathrm{ B }(1,1)$, $\mathrm{ C }(0,1)$ を辺の長さが $1$ の正方形の頂点とする。3点 $\mathrm{ P }(p,0)$, $\mathrm{ Q }(0,q)$, $\mathrm{ R }(r,1)$ はそれぞれ辺 OA, OC, BC 上にあり、3点 O, P, Q および3点 P, Q, R はどちらも面積が $\dfrac{1}{3}$ の三角形の3頂点であるとする。

(1) qrp で表し、 p, q, r それぞれのとりうる値の範囲を求めよ。

(2) $\dfrac{\mathrm{ CR }}{\mathrm{ OQ }}$ の最大値、最小値を求めよ。

【広告】
11年ぶり、待望の改訂版。
毎年、東大合格者400人以上を輩出している名門塾の最強のメソッドはそのままに、最新の情報へアップデート。
難関大学を目指すすべての受験生へ贈る、英単語攻略の技術が凝縮された決定版。
著者:鉄緑会英語科
出版社:KADOKAWA
発売日:2020-03-09
ページ数:704 ページ
値段:¥2,310
(2020年09月 時点の情報です)

考え方

誘導に従って計算していきます。三角形の面積の条件から、 $q,r$ を $p$ で書くことができます。また、 P, Q, R が辺の上の点であることから、範囲も決まります。(2)は、(1)の結果を使って、微分するだけです。