東京大学 文系 2018年度 第2問 解説

問題編

問題

 数列 $a_1,a_2,\cdots$ を\[ a_n=\frac{ {}_{2n} \mathrm{ C }_n}{n!}\quad(n=1,2,\cdots) \]で定める。

(1) $a_7$ と $1$ の大小を調べよ。

(2) $n\geqq 2$ とする。 $\dfrac{a_n}{a_{n-1}}\lt 1$ をみたす n の範囲を求めよ。

(3) $a_n$ が整数となる $n\geqq 1$ をすべて求めよ。

【広告】
ハイレベルな基礎の徹底の上に、本物の数学力が育つ。東大受験指導の名門・鉄緑会大阪校で実際に行われている「数学の基礎固め」。東大・京大・難関国立大学を目指す受験生のための、強固な数学の基礎力がつく一書。
著者: 鉄緑会大阪校数学科
出版社: KADOKAWA
発売日: 2015/11/28
337ページ

考え方

(1)は計算するだけです。

(2)は少し実験してから予想しましょう。階乗を使って二項係数を変形していきましょう。値はどんどん小さくなることがわかります。

(3)は、(1)(2)を用います。(1)や(2)で、1との大小を比較していましたが、これらを使うと、 n が大きくなると $a_n$ は整数にならないことが示せます。