京都大学 理系 2006年度 第1問 解説

問題編

【問題】
 $Q(x)$を2次式とする。整式$P(x)$は$Q(x)$では割り切れないが、$\{P(x)\}^2$は$Q(x)$で割り切れるという。このとき2次方程式$Q(x)=0$は重解を持つことを示せ。

【広告】

【考え方】
$Q(x)$は2次式なので、$P(x)$を割った余りは1次式か定数になります。これを用いて、$\{P(x)\}^2$を$Q(x)$で割り切れる、という条件を変形していけば、解くことができます。