京都大学 理系 2017年度 第3問 解説

問題編

問題

 p, q を自然数、 $\alpha, \beta$ を\[ \tan\alpha =\frac{1}{p}, \ \tan\beta = \frac{1}{q} \]を満たす実数とする。このとき\[ \tan(\alpha+2\beta)=2 \]を満たす p, q の組 $(p,q)$ をすべて求めよ。

【広告】
■これぞ京大! 不朽の名作・傑作選。究極の思考力問題集
■“京大らしいテーマ"(誘導がない! /論証しにくい! /京大名物・整数問題…)で編成
■自力で解くための底力を養う珠玉の64題

過去50年(最古は1956年)の京大の入試問題から、今の受験生に解いてほしい問題をセレクト。
「THE京大な問題」をテーマ別にまとめた「入試問題傑作選」。オリジナル解答・解説。
著者: 杉山義明
出版社: 教学社
発売日: 2018/11/28
240ページ

考え方

まずは、加法定理と倍角の公式を使って、 p, q を使った条件に持っていきましょう。そのあとは、 p, q が自然数であることを用いて、取りうる値の範囲が限定されることを導いていきます。