京都大学 理系 2014年度 第4問 解説

問題編

問題

 実数の定数 a, b に対して、関数 $f(x)$ を\[ f(x)=\frac{ax+b}{x^2+x+1} \]で定める。すべての実数 x で不等式\[ f(x)\leqq f(x)^3-2f(x)^2+2 \]が成り立つような点 $(a,b)$ の範囲を図示せよ。

【広告】
教科書や従来の参考書では、いろいろ書かれているわりに、読者が一番知りたい肝心なことは省かれている傾向があります。本書は、ここを重点的に丁寧に解説しました。ですから、しっかり読んでもらえばスムーズに理解してもらえるはずです。本書は気楽に読めて即効的な力がつくことを謳うものではありません。しっかり読む人に、数学的な心と考えること理解することの喜びと力を伝えるものです。
著者:長岡 亮介
出版社:旺文社
発売日:2012-09-23
ページ数:752 ページ
値段:¥1,870
(2020年09月 時点の情報です)

考え方

$f(x)$ の式を不等式に代入すると大変なことになります。ここでは、逆に、不等式から $f(x)$ に関する条件を求めて、それを満たす a, b の条件を求める、という方針で解きましょう。

「すべての実数」と「または」がどうつながっているか、注意しながら条件を考えていきましょう。

1 2