京都大学 文系 2014年度 第4問 解説

問題編

問題

 次の式\[ a_1=2, \ a_{n+1} = 2a_n-1 \quad (n=1,,3,\cdots) \]で定められる数列 $\{a_n\}$ を考える。

(1) 数列 $\{a_n\}$ の一般項を求めよ。
(2) 次の不等式\[ a_n^2-2a_n \gt 10^{15} \]を満たす最小の自然数 n を求めよ。ただし、 $0.3010 \lt \log_{10} 2 \lt 0.3011$ であることは用いてよい。

【広告】
ファンタジーイラスト×リアルデータで贈るエンタメ学科ガイド。ライトな見た目とは裏腹に収録情報は骨太。伝統ある定番の学科から新進気鋭の学科まで、多様化する専攻分野の実態と卒業後の進路を、学費・取得資格&検定、進路&就職先といったお役立ち情報とともに楽しく解説していきます。
著者:石渡 嶺司
出版社:SBクリエイティブ
発売日:2017-09-15
ページ数:192 ページ
値段:¥1,100
(2020年09月 時点の情報です)

考え方

(1)は、サービス問題です。

(2)もよくある不等式の問題ですが、1が邪魔です。ただ、よく考えれば、1を取り除いても問題ないことがわかります。

1 2