東京大学 文系 2006年度 第4問 解説

問題編

【問題】
 $\theta$は、$0^{\circ} \lt \theta \lt 45^{\circ}$の範囲の角度を表す定数とする。$-1\leqq x \leqq 1$の範囲で、関数$f(x) = |x+1|^3 +|x-\cos 2\theta|^3 +|x-1|^3$が最小値をとるときの変数xの値を、$\cos\theta$で表せ。

【広告】
青チャートが大学入学共通テストを見据え「増補改訂版」として発売

改訂版の巻末に実践編〔大学入学共通テストの準備・対策のためのコーナー〕として新傾向の問題を追加
実践編には関連する例題やコラムなどの参照先を示し、それらを振り返ることで理解が深まる仕組み
著者:チャート研究所
出版社:数研出版
発売日:2019-01-24
ページ数: ページ
値段:¥2,101
(2021年09月 時点の情報です)

【考え方】
問題をパッと見た段階では、絶対値が3つも入っていて場合分けが大変そう、という印象を受けます。しかし、範囲が限定されているので、見た目ほど大変ではありません。1つ目と3つ目の絶対値は、場合分けをすることなく外すことができます。

2つ目の絶対値は、通常であれば、場合分けをして外さないといけません。しかし、今の場合は「最小値をとるときのx」だけを考えればいいので、場合分けをしなくても計算することはできます。

$f(x)$の中に$\cos 2\theta$が入っているので、どこかで倍角の公式を使うというのもヒントになっています。

1 2