京都大学 理系 2012年度 第1問 解説

問題編

問題

 次の各問に答えよ。
(1) a が正の実数のとき $\displaystyle \lim_{n\to\infty} (1+a^n)^{\frac{1}{n}}$ を求めよ。
(2) 定積分$\displaystyle \int_1^{\sqrt{3}} \frac{1}{x^2} \log\sqrt{1+x^2} dx$ の値を求めよ。

【広告】
この本のテーマは《伝える》ことです。私たちは、この本で、数学的に正当な思考・数学的な事実を、どうすれば文章にして他者に伝えられるか、懸命に説明しています。
ちょっとした言葉づかい、論理的な説明の順序、条件と命題の違いの意識、いろいろな文字の立場の理解・・・・・・きっと、読者の皆さんの考えを読み手に《伝える》ために、すぐ役立つはずです。
著者: 﨑山 理史・松野 陽一郎
出版社: 旺文社
発売日: 2018/09/18
192ページ

考え方

(1)は、 $1$ と $a^n$ を比較して、どちらの影響が大きくなるかを考えるといいでしょう。そうすると、どこで場合分けをしないといけないかが見えてきます。影響が小さくなる方を、はさみうちの定理などを使って示すといいでしょう。

(2)は、(1)とは関係のない問題です。 $\log$ や $1+x^2$ の形から、どんな積分の計算を使っていたか、思い出しながら解いていきましょう。