センター試験 数学I・数学A 2006年度 第2問 解説

問題編

【問題】
 2次関数\[ y=6x^2+11x-10 \quad \cdots ① \]について考える。

 ①において、$y\leqq 0$となるxの範囲は\[ \frac{[アイ]}{[ウ]} \leqq x \leqq \frac{[エ]}{[オ]} \]である。

 ①のグラフをx軸方向にay軸方向にbだけ平行移動して得られるグラフをGとする。Gが原点$(0,0)$を通るとき、\[ b=[カキ]a^2+[クケ]a+[コサ] \]であり、このときGを表す2次関数は\[ y = [シ]x^2 -([スセ]a-[ソタ])x \quad \cdots ② \]である。

 $x=-2$と$x=3$に対応する2次関数②の値が等しくなるのは\[ a=\frac{[チツ]}{[テト]} \]のときである。このとき、2次関数②の$-2\leqq x\leqq 3$における
 最小値は$\displaystyle \frac{[ナニ]}{[ヌ]}$、最大値は[ネノ] である。

【広告】
この本のテーマは《伝える》ことです。私たちは、この本で、数学的に正当な思考・数学的な事実を、どうすれば文章にして他者に伝えられるか、懸命に説明しています。
ちょっとした言葉づかい、論理的な説明の順序、条件と命題の違いの意識、いろいろな文字の立場の理解・・・・・・きっと、読者の皆さんの考えを読み手に《伝える》ために、すぐ役立つはずです。
著者: 﨑山 理史・松野 陽一郎
出版社: 旺文社
発売日: 2018/09/18
192ページ

【考え方】
1つ目は、因数分解をしてグラフを描けばわかります。

その次は、平行移動した後のグラフに関する問題です。xの部分に$x-a$を、yの部分に$y-b$を代入すれば、移動後のグラフを表す式になります。これに「グラフが原点を通る」という条件を考えれば、解くことができます。

後半は、$x=-2$と$x=3$を代入した値が等しくなる、ということですね。下に凸で両端の値が等しくなるので、この区間での最小値は頂点、最大値は区間の端になります。