東京大学 文系 2014年度 第3問 解説

問題編

問題

 座標平面の原点を O で表す。
 線分 $y=\sqrt{3} x$ $(0\leqq x \leqq 2)$ 上の点 P と、線分 $y=-\sqrt{3} x$ $(-3 \leqq x \leqq 0)$ 上の点 Q が、線分 OP と線分 OQ の長さの和が $6$ となるように動く。このとき、線分 PQ の通過する領域を D とする。

(1) s を $-3\leqq s \leqq 2$ をみたす実数とするとき、点 $(s,t)$ が D に入るような t の範囲を求めよ。
(2) D を図示せよ。

【広告】

考え方

$x=s$ で切ったときに、断面がどうなるかを考えて領域を求める問題です。流れはよくあるものですが、計算が少しややこしく、細々した条件が抜けやすいので注意が必要です。(2)は(1)ができれば問題なくできるでしょう。

理系の第6問と似ていますが、微妙に条件が違っています。