なかけんの数学ノート

京都大学 理系 2017年度 第2問 解説

問題編

問題

 四面体 OABC を考える。点 D, E, F, G, H, I は、それぞれ辺 OA, AB, BC, CO, OB, AC 上にあり、頂点ではないとする。このとき、次の問に答えよ。

(1) $\overrightarrow{ \mathrm{ DG } }$ と $\overrightarrow{ \mathrm{ EF } }$ が平行ならば $\mathrm{ AE }:\mathrm{ EB } = \mathrm{ CF }:\mathrm{ FB }$ であることを示せ。
(2) D, E, F, G, H, I が正八面体の頂点となっているとき、これらの点は OABC の各辺の中点であり、 OABC は正四面体であることを示せ。

[広告]

考え方

(1)はベクトルを使って考えます。条件をベクトルで表現して考えましょう。

(2)は(1)を使うのが見え見えです。対称性から(1)を複数回使って、正八面体の各頂点のどれか1つが四面体の辺の中点になることを示しましょう。1つ示せれば、他は同様です。また、正四面体であることを示すには、正八面体の辺の長さと四面体の辺の長さの関係に注目しましょう。

次のページへ進む ⇒

[広告]
試験名: 大学入試, 京大理系, 京都大学
年度: 2017年度
分野: ベクトル
トピック: 空間ベクトル
レベル: ふつう
キーワード: 四面体, 正八面体, 正四面体, 空間ベクトル
更新日:2017/02/26