なかけんの数学ノート

京都大学 理系 2017年度 第1問 解説

問題編

問題

 w を0でない複素数、 x, y を $w+\dfrac{1}{w}=x+yi$ を満たす実数とする。

(1) 実数 R は $R\gt 1$ を満たす定数とする。 w が絶対値 R の複素数全体を動くとき、 xy 平面上の点 $(x,y)$ の軌跡を求めよ。
(2) 実数 $\alpha$ は $0\lt \alpha\lt \dfrac{\pi}{2}$ を満たす定数とする。 w が偏角 $\alpha$ の複素数全体を動くとき、 xy 平面上の点 $(x,y)$ の軌跡を求めよ。

[広告]

考え方

まずは、実部・虚部を比較して式を作りましょう。そのあとは、(1)は偏角が消えるように、(2)は絶対値が消えるように変形していきます。

次のページへ進む ⇒

[広告]
試験名: 大学入試, 京大理系, 京都大学
年度: 2017年度
分野: 複素数平面
トピック: 複素数平面
レベル: ふつう
キーワード: 領域, 複素数平面
更新日:2017/02/26