【基本】確率の基本事項
ここでは、高校数学で扱う確率に関して、基本的な事項をまとめていきます。確率とは何で、どうやって求めるものなのか、また、確率の分野全体で出てくる基本的な用語や性質を見ていきます。
確率とは
「確率」は、日常生活でもよく使われる単語です。「降水確率」や「宝くじが当たる確率」などというように、普段の生活でもよく耳にします。なので、どういうものか、イメージを持っている人もいるでしょう。数学で扱う確率も、そのイメージと大きくずれてはいません。
確率(probability)とは、「結果が確定的ではないものに対して、その結果が起きる割合を表したもの」です。「さいころをふって、1の目が出る確率」は、確率の例です。
さいころをふって、何の目が出るか、確定的ではありません。しかし、目は6つあって、どれも同じ割合で出るはずなので、1の目が出る割合は $\dfrac{1}{6}$ と考えられます。このようにして、これからいろんな確率を考えていくことになります。
なお、「さいころをふる」のような、結果が確定的でない実験や観測のことを試行(trial)といいます。そして、試行の結果として起こる事柄を事象(event)といいます。「1の目が出る」は、事象の例です。
これらの用語は、覚えていなくても、何を意味しているかが分かっていれば問題ありません。次のように問題文で出てくることが多いので、そのときに困らなければOKです。
事象 A の確率のことを $P(A)$ で表すことがあります。 P は、Probabilityの頭文字からとっています。上の例題は、「 $P(A), P(B)$ を求めなさい」と言っているのと同じです。
確率はどうやって求めるのか
次に、先ほどの例題「投げたさいころの目が、3以下となる確率」を通して、確率の基本的な求め方を説明していきます。
数学の問題で「さいころ」が出てくれば、特に断りがない限り、それぞれの目が出る割合・確率は等しい、と考えます。そういう前提です。つまり、1, 2, 3, 4, 5, 6 の目が出る確率はそれぞれ等しく、 $\dfrac{1}{6}$ となります。また、3以下となる場合は、 1, 2, 3 の3通りあります。よって、3以下となる確率は、\[ \frac{3}{6}=\frac{1}{2} \]と求められます。上の例題は、両方とも $\dfrac{1}{2}$ が答えとなります。
確率とは、その結果が起きる割合を表すものなので、「その事象が起きる場合の数」を「起こりうるすべての場合の数」で割る、というのが基本的な求め方です。なので、「場合の数」の分野で学んだことの多くが、確率を求めるために必要になってきます。
なお、厳密には、上のような割り算をするときには、それぞれの起きる確率が同じであることをチェックする必要があります。これに関しては、【基本】同様に確からしいで詳しく見ていくことにします。
全事象と空事象
ある試行(さいころをふるなど)によって起こる事柄を、事象というんでしたね。そして、この事象が起こる割合のことを、確率というのでした。
このとき、すべての起こりうる事柄を集めたものを、全事象(certain event)といいます。さいころをふる例でいうと、全事象は「1, 2, 3, 4, 5, 6 のどれかの目が出る事象」となります。「起こりうるすべての事柄を集めたもの」ということから、全事象の確率は、 $1$ となります。上の割り算で考えると、「(すべての場合の数)÷(すべての場合の数)」なので、当然ですね。
また、絶対起こらない事象のことを、空事象(Impossible Event)といいます。「起こらない」のだから、当然、空事象の確率は $0$ です。例えば、「さいころをふって、7の目が出る事象」は空事象です。空集合は $\varnothing$ で表しましたが、空事象も $\varnothing$ で表します。
どの事象も、「必ず起こる」と「絶対起きない」の間にあるはずです。なので、どんな事象 A に対しても、事象 A の起こる確率 $P(A)$ は\[ 0\leqq P(A)\leqq 1 \]を満たします。
これは、降水確率が負になることや100%を超えることがないのと同じです。「こんな当たり前のこと、いつ使うんだろう」と思うかもしれませんが、問題を解くときにこの性質を使うケースはほとんどありません。確率を計算した結果が、負になったり、1より大きくなってしまったときに、「どこかで計算が間違っているようだ」と気づくために使うことの方が多いです。
おわりに
ここでは、確率とは何か、どうやって求めるか、そして基本的な用語や簡単な性質について見てきました。今後、ここに上げた内容は自然に使っていくので、慣れていきましょう。