東京大学 理系 2014年度 第4問 解説

問題編

問題

 p, q は実数の定数で、 $0 \lt p \lt 1$, $q \gt 0$ をみたすとする。関数\[ f(x) = (1-p)x +(1-x)(1-e^{-qx}) \]を考える。
 以下の問いに答えよ。必要であれば、不等式 $1+x\leqq e^x$ がすべての実数 x に対して成り立つことを証明なしに用いてよい。

(1) $0 \lt x \lt 1$ のとき、 $0 \lt f(x) \lt 1$ であることを示せ。
(2) $x_0$ は $0 \lt x_0 \lt 1$ をみたす実数とする。数列 $\{x_n\}$ の各項 $x_n$ $(n=1,2,3,\cdots)$ を、\[ x_n = f(x_{n-1}) \]によって順次定める。 $p \gt q$ であるとき、\[ \lim_{n\to\infty} x_n = 0 \]となることを示せ。
(3) $p \lt q$ であるとき、\[ c=f(c), \quad 0 \lt c \lt 1 \]をみたす実数 c が存在することを示せ。

【広告】
河合塾数学科の考える「思考力・判断力・表現力」をまとめ、これに基づいて過去の入試問題を分析し、その中から思考力を養うために経験しておきたい問題を収集し解答・解説を収録。また、思考調査の問題を参考にして「共通テスト型問題」を作成。
著者: 河合塾数学科
出版社: 河合出版
発売日: 2018/06/01
125ページ

考え方

(1)は、微分して極値を調べる、という手法を使ってしまいがちですが、その必要はありません。与えられた条件から各パーツを組み合わせるだけで、示したい不等式が導けます。

(2)は、(1)から各項が正ということがわかります。あとは上からおさえてはさみうちに持ち込むパターンです。ヒントの式を使います。

(3)は、この形を見た瞬間に平均値の定理や中間値の定理を思いつきたいところです。関数の端っこの挙動を調べて示します。