京都大学 理学部特色入試 2016年度 第4問 解説

(2015年11月に行われた特色入試の問題です。2016年に行われた特色入試の問題はこちら

問題編

問題

 以下の条件をすべて満たす数列 $\{x_n\}$, $\{y_n\}$ は存在するか。

(条件1)すべての自然数 n に対して、 $x_n$ および $y_n$ は自然数である。

(条件2)すべての自然数 n, m に対して、不等式\[ |n-m| \leqq 100|x_n-x_m| +100|y_n-y_m| +100 \]が成立する。

(条件3)どのような自然数 a, b に対しても、自然数 n を適切に選べば不等式\[ |a-x_n|+|b-y_n|\leqq 100 \]が成立する。

【広告】
■これぞ京大! 不朽の名作・傑作選。究極の思考力問題集
■“京大らしいテーマ"(誘導がない! /論証しにくい! /京大名物・整数問題…)で編成
■自力で解くための底力を養う珠玉の64題

過去50年(最古は1956年)の京大の入試問題から、今の受験生に解いてほしい問題をセレクト。
「THE京大な問題」をテーマ別にまとめた「入試問題傑作選」。オリジナル解答・解説。
著者: 杉山義明
出版社: 教学社
発売日: 2018/11/28
240ページ

考え方

イメージでいうと、条件2は「だいぶ先の方で、すごく散らばっている」という条件であり、条件3は「ぎっしり詰まっている」条件です。なので、この2つを同時に満たすのは難しいんじゃないか、と予想できます。

実際、n をすごく大きくしていくと、条件2と条件3を同時に満たすのが不可能になってきます。このことを解答にしていきます。書きにくいですが。