なかけんの数学ノート

京都大学 理学部特色入試 2016年度 第4問 解説

問題編

問題

 以下の条件をすべて満たす数列 $\{x_n\}$, $\{y_n\}$ は存在するか。

(条件1)すべての自然数 n に対して、 $x_n$ および $y_n$ は自然数である。

(条件2)すべての自然数 n, m に対して、不等式\[ |n-m| \leqq 100|x_n-x_m| +100|y_n-y_m| +100 \]が成立する。

(条件3)どのような自然数 a, b に対しても、自然数 n を適切に選べば不等式\[ |a-x_n|+|b-y_n|\leqq 100 \]が成立する。

[広告]

考え方

イメージでいうと、条件2は「だいぶ先の方で、すごく散らばっている」という条件であり、条件3は「ぎっしり詰まっている」条件です。なので、この2つを同時に満たすのは難しいんじゃないか、と予想できます。

実際、n をすごく大きくしていくと、条件2と条件3を同時に満たすのが不可能になってきます。このことを解答にしていきます。書きにくいですが。

次のページへ進む ⇒

[広告]
試験名: 大学入試, 京大特色, 京都大学
年度: 2016年度
分野: 数列
トピック: 数列
レベル: かなりむず
キーワード: 存在, 格子点, 何をどうしたらいいのかわからない問題
更新日:2016/12/03