なかけんの数学ノート

東京大学 文系 2017年度 第1問 解説

問題編

問題

 座標平面において2つの放物線 $A: y=s(x-1)^2$ と $B:y=-x^2+t^2$ を考える。ただし、 s, t は実数で、 $0\lt s$, $0\lt t \lt 1$ をみたすとする。放物線 Ax 軸および y 軸で囲まれる領域の面積を P とし、放物線 B の $x\geqq 0$ の部分と x 軸および y 軸で囲まれる領域の面積を Q とする。 AB がただ1点を共有するとき、 $\dfrac{Q}{P}$ の最大値を求めよ。

[広告]

考え方

P, Qs, t を使って具体的に計算できます。また、共有点が1点という条件から s, t に関する条件も導けます。これらを用いて $\dfrac{Q}{P}$ を1つの文字で表すことができます。あとは、この増減表をかけば、最大値が求められます。

次のページへ進む ⇒

[広告]
試験名: 大学入試, 東大文系, 東京大学
年度: 2017年度
分野: 微分と積分の基礎
トピック: 微分(文系), 積分(文系)
レベル: ふつう
キーワード: 面積, 放物線, 判別式, 積分, 増減表, 微分
更新日:2017/02/27